Diethoxyphosphoryl as a Protecting-Activating Group in the Synthesis of Polyazacyclophanes

by Andrea Chellini and Roberto Pagliarin

Dipartimento di Chimica Organica e Industriale, Università degli Studi di Milano, Via Venezian 21, I-20131 Milano

and Giovanni B. Giovenzana*

Dipartimento di Scienze Chimiche Alimentari Farmaceutiche e Farmacologiche, Università degli Studi del Piemonte Orientale 'A. Avogadro', Viale Ferrucci 33, I-28100, Novara

and Giovanni Palmisano* and Massimo Sisti

Dipartimento di Scienze Chimiche Fisiche e Matematiche, Universitá degli Studi dell'Insubria, Via Lucini 3, I-22100 Como

The fully diethoxyphosphoryl(Dep)-protected polyamines $1b - 3b$ were prepared from the corresponding polyamines with 'diethyl phosphite' (=diethyl phosphonate) and CCl₄ in a solid base/organic liquid two-phase system in the presence of Bu₄NBr as phase-transfer catalyst. Subsequent phase-transfer-catalyzed alkylation of phosphoramidates $1b - 3b$ with bis(chloromethyl)arenes $5 - 8$ in the presence of Bu₄N(HSO₄) followed by deprotection gave good yields of polyazacyclophanes $9a - 16a$.

Introduction. – Polyazacyclophanes represent one of the most useful macrocyclic multidentate compounds for a variety of applications ranging from molecular recognition (host molecules for inclusion of neutral organic molecules) to coordination chemistry [1]. Furthermore, the reasons for the interest in polyazacyclophanes are twofold: i) to modulate lipophilicity and to modify biodistribution of metal-complexbased drugs, ii) to create molecules exhibiting new photophysical and photochemical properties $(i.e.,$ the presence of a suitable chromophore is required in luminescent lanthanide complexes) [2]. Many cyclization methods have been developed to synthesize azamacrocycles under excellent control of the formed ring size, while minimizing the extent of competing side reactions $(i.e.,$ linear oligomer formation and reagent decomposition). The most efficient ring construction is based on the ring closure involving the formation of two C-N bonds by reaction of α, ω -bis(electrophiles) and the dianion formed from a suitably protected α , ω -diamine (Richman-Atkins procedure) [3] [4]. p-Toluenesulfonamides have been used more frequently than any other protective groups (PGs) for primary amines, because of the powerful electron-withdrawing effect of the sulfonyl group, their ease of formation, and their stability under a wide range of reaction conditions. Their removal is accomplished by many different procedures, such as by refluxing in strong acids (H_2SO_4) or HBr), by sodium naphthalenide, lithium aluminum hydride, or $Red-Al^{\circ}$, by dissolving-metal methods, as well as by photochemical and electrochemical cleavage [5]. Recently, new cleavage methods have been developed, which include the reagents SmI_2 [6], Mg in

MeOH [7], Bu_4NF [8], and Me₃SiI [9]. Furthermore, many other PGs (e.g., nosylamides [9], 2,4-dinitrobenzenesulfonamides [10], naphthalene-2-sulfonamides [11], tert-butylsulfonamides [12], trifluoroacetamides, carbamates) have already been proposed for the protection of primary amines, keeping in view the sensitivity of the molecule towards the acidic or basic conditions. All these PGs suffer from one or more disadvantages, such as operationally difficult reaction conditions, long reaction times, expensive precursors, low yields, or contamination of the final product with hardly separable impurities.

In connection with our project designed to prepare new contrast agents with enhanced relaxivity aimed at magnetic-resonance imaging (MRI), we synthesized a series of azamacrocycles. Some of these have previously been prepared by the Richman-Atkins method applied to the nosylamides [9] or tosylamides [1b] [13]. While good yields were reported, the reaction conditions were not favorable for an application of the method to prepare other azacyclophanes embodying different subunits. On this background, it appears that diethyl phosphoramidates of primary amines would provide an interesting alternative to the arenesulfonamides in terms of the planned alkylation-deprotection strategy for the synthesis of polyazacyclophanes. If successful, advantages would arise from the easy removal of this PG.

Results. $-$ The required fully diethoxyphosphoryl(Dep)-protected polyamines $1b -$ 3b were efficiently prepared by reacting the corresponding polyamines $1a - 3a$ with diethyl phosphite ($=$ diethyl phosphonate)/CCl₄ in a solid base/organic liquid twophase system (mixture of solid K₂CO₃ and NaHCO₃/CH₂Cl₂) in the presence of Bu4NBr as phase-transfer catalyst at room temperature (Scheme). This procedure (Atherton-Openshaw-Todd reaction [14]) was found to be far superior to the use of diethyl phosphorochloridate (EtO) ₂POCl in pyridine as phosphorylating agent.

Although phosphoramidates have been alkylated in a number of cases [15], a single report deals with the use of this PG during the synthesis of multidentate macrocyclic compounds [16]. These successful syntheses by Mertes and co-workers [16] have relied on the use of NaH in DMSO as base; however, in our cases, we were unable to force the reaction to completion under the reported conditions and variations thereof; messy reactions were uniformly observed. Thus, alternative conditions for macrocyclization involving phosphoramidates under phase-transfer conditions had to be found.

In principle, the success of the alkylation of $1b - 3b$ mainly depends on the efficient generation of anions and their presence in the organic phase to undergo the subsequent reaction with the bis(chloromethyl) derivatives $5 - 8$. Thus, we investigated the effect of different phase-transfer catalysts, bases, and phase systems on the reaction. Tetrabutylphosphonium bromide (Bu4PBr) and tris[2-(2-methoxyethoxy)ethyl]amine (TDA-1) did not catalyze the reaction at all, while tetrabutylammonium hydrogen sulfate $(Bu₄N(HSO₄))$ was superior to triethyl(benzyl)ammonium chloride and *Aliquat*[®]-336. For example, in the liquid-liquid two-phase system, aqueous NaOH solution/toluene, **2b** reacted with 7 under reflux for 4 h in the presence of $Bu_4N(HSO_4)$ (10 mol-%), providing the Dep-protected cyclophane 16b in modest to excellent isolated yield. Variations in the concentration of NaOH significantly affected the yield of the procedure. The reaction proceeded most satisfactorily (80%) with a 50% aqueous

i) (EtO)₂P(O)H, CCl₄, NaHCO₃, Bu₄NBr, r.t. ii) 50% NaOH/PhMe, Bu₄N(HSO₄). iii) HCl_(g) in dioxane, r.t., then NaOH.

solution (see *Table 1*), whereas the yields fell to only 25% when a 30% aqueous solution was employed. Different phase systems (e.g., liquid/liquid or solid/liquid) and different bases did not much influence the results. When the same reaction was

$(Dep)_{m+1}$ -Polyamine	m, n	α , ω -Dihalide	$(Dep)_{m+1}$ -Cyclophane	Yield $\lceil \% \rceil^a$) $78(-)$	
3 _b	2, 2	5	9		
2 _b	3, 1	5	10 _b	$73(-)$	
2 _b	3, 1	6	11 _b	52 (77) [1b]	
3b	2, 2	6	12 _b	56 (74) [1b]	
1 _b	2, 1		13 _b	82 (70) [19]	
1 _b	2, 1	8	14 b	79 (85) [19]	
3 _b	2, 2	7	15 _b	$68(-)$	
2 _b	3, 1	7	16b	$80(63)$ [19]	

Table 1. Yields of the Macrocyclization of 1b-3b with 5-8 in the Two-Phase System 50% Aqueous NaOH Solution/Toluene in the Presence of $Bu_4N(HSO_4)$

^a) In parentheses, reported yields for cyclizations employing PGs other than Dep.

conducted in the absence of a phase-transfer catalyst, the starting reagents were recovered unconverted.

We have explored the scope of this phase-transfer-catalyzed reaction and established that for the fully Dep-protected amines $1b - 3b$ and bis(chloromethyl) derivatives $5-8$ the alkylation proceeded uneventfully, yielding $9b-16b$ (see Table 1). The failure to obtain the corresponding cyclophane with 4 illustrates the practical limit of chemical stability that can be accommodated in this reaction. Moreover, the efficiency of the phase-transfer catalyst allowed the use of a solvent (toluene) of lower polarity than DMSO, which simplified the workup procedure substantially.

Finally, removal of the Dep groups could be easily accomplished by stirring the crude protected macrocycles $9b - 16b$ in 1.4-dioxane saturated with gaseous HCl [17] at room temperature for $12 - 24$ h. The corresponding hydrochlorides of **9a**-16a precipitated from the reaction mixtures and were recovered by filtration. Neutralization, basification, and extraction with CH₂Cl₂ gave the expected free bases $9a - 16a$ in excellent yields (Table 2).

$(Dep)_{m+1}$ -Cyclophane 9b		10b	– 11b	12b	13h	14h	15b	16b
Cyclophane	9а	10a	- 11a	12a	13a	14a	15а	- 16a
Yield $\lceil\% \rceil^a$)			$92 (-) 90 (-) 87 (53)$ [1b] 78 (43 [1b] 75 (67) [19] 95 (80) [20] 90 (-) 86 (78) [19]					

Table 2. Yields of the Deprotection of the Dep-Cyclophanes

^a) In parentheses, reported yields for procedures employing PGs other than Dep.

Conclusion. $-$ Phase-transfer-catalyzed alkylation of phosphoramidates **1b** $-$ **3b** and subsequent deprotection give good yields of polyazacyclophanes 9a-16a that are comparable to or slightly higher than those obtained in the alkylation of sulfonamides. Furthermore, the solubility of the Dep-protected polyamines $1b - 3b$ in a wide range of solvents, excellent product recovery, as well as the easy deprotection after the alkylation step extend their potential synthetic usefulness as valuable intermediates in the synthesis of polyazacyclophanes.

Experimental Part

1. General. All amines and phase-transfer catalysts, 'diethyl phosphite' ($=$ diethyl phosphonate), CCl₄ (Caution!; when working with CCl_4 , the use of standard safety precautions is strongly recommended [18]) were purchased from Aldrich and used without purification. Anal. TLC: silica gel $60F_{254}$ (Macherey- $Nagel$); detection by spraying with alkaline KMnO₄ soln., followed by heating to 120°. M.p.: uncorrected; Büchi-510 apparatus. IR Spectra: Perkin-Elmer-1420 spectrophotometer; film, unless stated otherwise; in cm^{-1} . ¹H- and ¹³C-NMR Spectra: at 200 and 50.3 MHz, resp.; *Bruker-AC200* spectrometer; CDCl₃ soln., unless stated otherwise, chemical shifts δ in ppm downfield from internal SiMe₄ (= 0.00 ppm; J in Hz). Mass spectra: Cl mode (isobutane); VG7070EQ spectrometer. Elemental analyses were carried out on a Perkin Elmer 240 instrument.

2. Dep-Polyamines: General Procedure. To a soln. of polyamine $1a - 3a$ (20 mmol) and CCl₄ (200 mmol; *Caution*!) in CH₂Cl₂ (50 ml), anh. K₂CO₃ (100 mmol for **1a** and **3a**; 120 mmol for **2a**), NaHCO₃ (100 mmol for 1a and 3a; 120 mmol for 2a) and Bu₄NBr (2 mmol) are sequentially added. 'Diethyl phosphite' ($=$ diethyl phosphonate; 65 mmol for 1a and 3a; 85 mmol for 2a) is slowly added to the vigorously stirred suspension. The temp. of the mixture (exothermic reaction) is kept at $0-5^\circ$ by ice-bath cooling. After the addition, the mixture is allowed to reach r.t. and stirred overnight. $H_2O(100 \text{ ml})$ is added to the suspension and the mixture stirred until the inorg. salts are completely dissolved. The aq. phase is extracted with $CH_2Cl_2 (2 \times 10 \text{ ml})$ and the combined org. phase washed with 1m HCl $(2 \times 20 \text{ ml})$, 10% K₂CO₃ (20 ml), and H₂O (20 ml), dried (Na₂SO₄), and evaporated. Compound 2b solidifies quickly and is crystallized from diisopropyl ether; pure 1b and 3b are obtained as colorless oils after prolonged standing under vacuum to eliminate residual traces of diethyl phosphite.

3. Cyclization: General Procedure. Dep-Polyamine $1b - 3b$ (3 mmol), bis(chloromethyl)arene $5-8$ (3 mmol) and Bu_aN(HSO₄) (0.3 mmol) are dissolved in toluene (10 ml) . Aq. 50% NaOH soln. (10 ml) is added, and the vigorously stirred soln. is refluxed for $2-8$ h, until TLC (CH₂Cl₂/MeOH 9:1) shows complete disappearance of the starting materials. The two-phase system is then cooled, diluted with H₂O (50 ml) and thoroughly extracted with CH_2Cl_2 (4 \times 15 ml). The collected org. extracts are dried (Na₂SO₄), filtered, and

evaporated. The semisolid residue is crystallized from $iPr₂O/h$ exame or submitted to flash chromatography $(CH_2Cl_2/MeOH 95:5)$: pure $9b - 16b$.

4. Dep Deprotection: General Procedure. Dep-polyazacyclophane $9b - 16b$ (1 mmol) is dissolved in dioxane saturated with gaseous HCl (10 ml), the resulting soln. is stirred overnight at r.t. Polyazacyclophane hydrochlorides precipitate, either spontaneously or after addition of Et₂O, and are isolated by filtration and washed with Et₂O. The free polyazacyclophanes are obtained by partitioning the hydrochlorides between 6m NaOH and CH₂Cl₂. The org. extracts are dried (Na_2SO_4/K_2CO_3) and evaporated: pure **9a** – 16a.

5. Data. 1,4,7-Tris(diethoxyphosphoryl)-1,4,7-triazaheptane (= Diethyl Bis{2-[(diethoxyphosphoryl)amino lethyll phosphoramidate; **1b**). Colorless viscous oil. IR: 3435, 3246, 2981, 2936, 2907, 2874, 1641, 1445, 1234, 1029, 967, 798. ¹H-NMR: 3.85 – 4.06 (m, 12 H); 3.43 (m, 2 H); 2.98 (m, 8 H); 1.61 (t, J = 6.6, 4 H); 1.24 (t, J = 7.04, 18 H). ¹³C-NMR: 62.2 (*J*(C,P) = 5.6, C); 42.2 (CH₂); 38.1 (CH₂); 29.7 (CH₂); 16.1 (*J*(C,P) = 6.4, CH₂). MS; 512 (MH^+). Anal. calc. for $C_{16}H_{40}N_3O_9P_3$ (511.42): C 37.58, H 7.88, N 8.22; found: C 37.45, H 8.01, N 8.20.

1,4,7,10-Tetrakis(diethoxyphosphoryl)-1,4,7,10-tetraazadecane (= Tetraethyl N,N'-Ethan-1,2-diylbis({2-[(diethoxyphosphoryl)amino]ethyl]phosphoramidate); 2b): White solid. M.p. 77° (i-Pr₂O). ¹H-NMR: 3.91 – 4.05 $(m, 16 H)$; 3.30 $(m, 2 H)$; 3.01 – 3.12 $(m, 12 H)$; 1.27 $(t, 24 H)$. ¹³C-NMR: 62.5 $(d, J(C, P) = 5.3,$ Me); 62.2 (d, CH_2) ; 47.7 (CH₂); 45.3 (CH₂); 39.9 (CH₂); 16.1 $(d, J(C, P) = 5.3,$ Me). MS: 691 (*M*H⁺). Anal. calc. for $C_{22}H_{54}N_4O_{12}P_4$ (690.58): C 38.26, H 7.88, N 8.11; found: C 38.07, H 8.01, N 8.09.

1,5,9-Tris(diethoxyphosphoryl)-1,5,9-triazanonane (= Diethyl Bis{3-[(diethoxyphosphoryl)amino]propyl]phosphoramidate; 3b): Colorless viscous oil. IR: 3435, 3246, 2982, 2937, 2907, 2874, 1641, 1446, 1393, 1234, 1029, 967, 798. ¹H-NMR: 3.96 (m, 12 H); 3.43 (m, 2 H); 2.98 (m, 8 H); 1.61 (t, 4 H, $J = 6.6$); 1.24 (t, $J = 7.0$, 18 H). 13 C-NMR: 62.2 (J(C,P) = 5.6, CH₂); 62.0 (J(C,P) = 5.2, CH₂); 42.2 (CH₂); 38.1 (CH₂); 29.8 (CH₂); 16.1 $(J(C, P) = 6.4, CH_2)$. MS: 540 (*M*H⁺). Anal. calc. for C₁₈H₄₄N₃O₉P₃ (539.48): C 40.08, H 8.22, N 7.79; found: C 39.99, H 8.37, N 7.82.

3,7,11-Tris(diethoxyphosphoryl)-3,7,11-triazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (9b): Colorless oil. IR: 3468, 2981, 2932, 1636, 1446, 1392, 1367, 1240, 1029, 964, 801. ¹ H-NMR: 7.40 (s, 1 H); 7.26 (s, 3 H); 4.17 $(d, J(C, P) = 8.2, 4 H)$; 4.05 $(m, 8 H)$; 3.83 $(m, 4 H)$; 2.92 $(dt, J = 10.4, 7.1, 4 H)$; 2.69 $(dt, J = 10.4, 7.8, 4 H)$; 1.34 $(quint, J = 7.2, 4 H)$; 1.31 $(t, J = 7.1, 12 H)$; 1.17 $(t, J = 7.1, 6 H)$. ¹³C-NMR: 139.2 $(J(C, P) = 5.0, C)$; 129.2 (CH); 128.9 (CH); 127.9 (CH); 62.2 (d, $J(C, P) = 5.4$, CH₂); 61.7 (d, $J(C, P) = 5.4$, CH₂); 52.2 (CH₂); 45.7 (CH₂); 44.1 (CH₂); 27.9 (CH₂); 16.1 (d, J(C,P) = 6.7, Me); 15.9 (d, J(C,P) = 6.7, Me). MS: 642 (MH⁺). Anal. calc. for $C_{26}H_{50}N_3O_9P_3$ (641.61): C 48.67, H 7.85, N 6.55; found: C 48.61, H 8.02, N 6.50.

3,6,9,12-Tetrakis(diethoxyphosphoryl)-3,6,9,12-tetraazabicyclo[12.3.1]octadeca-1(18),14,16-triene (10b): Thick colorless oil. IR: 3468, 2983, 2933, 2907, 1660, 1462, 1364, 1240, 1029, 962, 795. ¹ H-NMR: 7.38 (s, 3 H); 7.05 (s, 1 H); 4.20 (d, J = 8.2, 4 H); 4.14 - 3.82 (m, 16 H); 2.85 (m, 8 H); 2.65 (m, 4 H); 1.31 (t, 6 H); 1.22 (t, 6 H). 13C-NMR: 137.8 (d, J(C,P) = 4.7, C); 129.7 (CH); 129.2 (CH); 128.1 (CH); 62.5 (J(C,P) = 5.7, CH₂) $(J(C,P) = 5.6, CH_2)$; 50.6 $(J(C,P) = 4.4, CH_2)$; 45.9 (CH_2) ; 44.8 (CH_2) ; 43.7 (CH_2) ; 16.1 $(J(C,P) = 5.7,$ Me); 16.0 $(J(C, P) = 5.6$, Me). MS: 793 (MH⁺). Anal. calc. for $C_{30}H_{60}N_4O_{12}P_4$ (792.72): C 45.45, H 7.63, N 7.07; found: C 45.31, H 7.70, N 6.98.

3,6,9,12-Tetrakis(diethoxyphosphoryl)-3,6,9,12-tetraazabicyclo[12.2.2]octadeca-14,16,17-triene (11b): Colorless wax. IR: 3468, 2982, 1664, 1450, 1362, 1244, 1028, 964, 800. ¹H-NMR: 7.27 (s, 4 H); 4.09 (d, J = 6.07, 4 H); $3.94 - 4.08$ (m, 8 H); $3.72 - 3.94$ (m, 8 H); 2.82 (m, 4 H); 2.52 (m, 4 H); 2.34 (m, 4 H); 1.25 (t, $J = 7.05$, 12 H); 1.14 (t, J = 6.07, 12 H). ¹³C-NMR: 137.5 (J(C,P) = 6.8, C); 129.3 (CH); 62.5 (J(C,P) = 5.5, CH₂); 62.2 (J(C,P) = 5.4, CH₂); 52.3 ($J(C,P) = 4.4$, CH₂); 45.8 (CH₂); 45.1 (CH₂); 44.7 ($J(C,P) = 4.36$, CH₂); 16.1 ($J(C,P) = 7.1$, Me); 15.9 ($J(C, P) = 7.1$, Me). MS: 793 (MH⁺). Anal. calc. for $C_{30}H_{60}N_4O_{12}P_4$ (792.72): C 45.45, H 7.63, N 7.07; found: C 45.24, H 7.72, N 6.95.

3,7,11-Tris(diethoxyphosphoryl)-3,7,11-triazabicyclo[11.2.2]heptadeca-13,15,16-triene (12b): Colorless wax. IR: 3468, 2982, 2933, 2907, 1646, 1446, 1392, 1367, 1240, 1167, 1029, 965. 800. ¹H-NMR: 7.36 (*s*, 4 H); 4.15–3.73 $(m, 6 H)$; 2.85 $(m, 4 H)$; 2.39 $(m, 6 H)$; 1.31 $(t, J = 70, 12 H)$; 1.18 $(t, J = 70, 6 H)$; 0.96 $(m, 4 H)$. ¹³C-NMR: 139.3 ($J(C,P)$ = 5.5, C); 129.7 (CH); 62.3 ($J(C,P)$ = 5.2, CH₂); 61.8 ($J(C,P)$ = 4.6, CH₂); 53.4 (CH₂); 46.2 (CH₂); 44.2 (CH₂); 29.7 (CH₂); 16.1 (J(C,P) = 5.7, Me); 16.0 (J(C,P) = 5.5, Me). MS: 642 (MH⁺). Anal. calc. for $C_{26}H_{50}N_3O_9P_3$ (641.61): C 48.67, H 7.85, N 6.55; found: C 48.51, H 8.00, N 6.46.

3,6,9-Tris(diethoxyphosphoryl)-3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene (13b): Colorless oil. ¹H-NMR: 7.62 (*t*, *J* = 7.6, 1 H); 7.21 (*d*, *J* = 7.6, 2 H); 4.23 (*d*, 4 H); 3.71 – 3.97 (*m*, 12 H); 2.82 (*m*, 8 H); 1.14 $(m, 12 H)$. ¹³C-NMR: 156.2 $(d, J(C, P) = 4.8)$; 138.3 (CH); 122.9 (CH); 62.1 $(d, J(C, P) = 4.7, CH_2)$; 61.9 $(d, J(C, P) = 5.3, CH_2)$; 52.8 (CH₂); 43.3 (CH₂); 42.1 (CH₂); 15.9 (d, $J(C, P) = 5.4$, Me). MS: 615 (MH⁺). Anal. calc. for $C_{23}H_{45}N_4O_9P_3$ (614.55): C 44.95, H 7.38, N 9.12; found: C 44.95, H 7.50, N 9.09.

12-[(4-Bromobenzyl)oxy]-3,6,9-tris(diethoxyphosphoryl)-3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13 triene (14b): Light yellow oil. ¹H-NMR: 7.49 (d, J = 8.4, 2 H); 7.35 (d, J = 8.4, 2 H); 7.30 (d, J = 8.4, 1 H); 7.21 $(d, J = 8.4, 1 \text{ H})$; 5.07 (s, 2 H); 4.54 (d, J = 5.6, 2 H); 4.29 (d, J = 7.8, 2 H); 3.86 - 4.05 (m, 12 H); 2.94 - 3.15 $(m, 8 H)$; 1.16 – 1.33 $(m, 12 H)$. ¹³C-NMR: 152.6 (C); 148.2 (d, J(C,P) = 4.5, C); 145.0 (d, J(C,P) = 7.7, C); 134.7 (C); 131.7 (CH); 128.7 (CH); 124.3 (CH); 122.0 (C); 120.3 (CH); 69.4 (CH₂); 62.1 – 62.3 (3 CH₂); 52.6 $(d, J(C, P) = 4.6, CH_2)$; 48.1 $(d, J(C, P) = 4.6, CH_2)$; 43.9 (CH_2) ; 42.8 $(2s, CH_2)$; 41.9 (CH_2) ; 15.9 - 16.1 (3s, Me). MS: 799, 801 (MH^+). Anal. calc. for $C_{30}H_{50}BrN_4O_{10}P_3$ (779.57): C 45.07, H 6.30, N 7.01; found: C 44.89, H 6.31, N 6.95.

3,7,11-Tris(diethoxyphosphoryl)-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (15b): Colorless viscous oil. IR: 3469, 2981, 2932, 1642, 1576, 1456, 1392, 1368, 1245, 1029, 964, 800. ¹H-NMR: 7.60 (*t*, *J* = 7.6, 1 H); 7.35 (d, J = 7.6, 3 H); 4.24 (d, J = 9.9, 4 H); 3.99 (m, 8 H); 3.80 (m, 4 H); 2.91 (m, 4 H); 2.73 (dt, J = 10.2, 7.6, 4 H); 1.44 (quint., $J = 7.3$, 2 H); 1.24 (t, $J = 7.1$, 12 H); 1.14 (t, $J = 7.1$, 6 H). ¹³C-NMR: 158.1 (C); 137.2 (CH); 122.4 (CH); 62.1 (d, J(C,P) = 5.3, CH₂); 61.7 (d, J(C,P) = 5.3, CH₂); 53.5 (d, J(C,P) = 4.4, CH₂); 45.7 (CH₂); 45.3 (CH_2) ; 28.3 (CH_2) ; 15.9 (d, $J(C,P) = 6.7$, Me). MS: 643 (MH⁺). Anal. calc. for $C_25H_{49}N_4O_9P_3$ (642.60): C 46.73, H 7.69, N 8.72; found: C 46.55, H 7.89, N 8.62.

3,6,9,12-Tetrakis(diethoxyphosphoryl)-3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),14,16-triene (16b): Colorless crystals. M.p. 87° (i-Pr₂O). ¹H-NMR: 7.74 (t, J = 7.7, 1 H); 7.47 (d, J = 7.7, 2 H); 4.38 (d, J = 10.4, 4 H); 4.04 $(m, 16 H)$; 3.01 $(m, 8 H)$; 2.85 $(m, 4 H)$; 1.35 $(m, 6 H)$; 1.29 $(d, J = 7.1, 6 H)$. ¹³C-NMR: 157.5 (C); 137.6 (CH); 122.3 (CH); 62.5 (d, $J(C,P) = 19.8$, CH₂); 62.3 (d, $J(C,P) = 19.4$, CH₂); 52.1 (CH₂); 45.9 (CH₂); 44.5 (CH_2) ; 43.7 (CH₂); 16.1 – 15.9 (2 Me). MS: 794 (MH⁺). Anal. calc. for $C_{29}H_{59}N_5O_{12}P_4$ (793.70): C 43.88, H 7.49, N 8.82; found: C 43.74, H 7.57, N 8.82.

3,7,11-Triazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (9a): Colorless wax. ¹H-NMR: 7.71 (s, 1 H); 7.23 $(t, J = 7.0, 2 \text{ H})$; 7.05 $(d, J = 7.0, 1 \text{ H})$; 3.89 $(s, 4 \text{ H})$; 2.78 $(t, J = 5.6, 4 \text{ H})$; 2.54 $(t, J = 5.9, 4 \text{ H})$; 1.71 (quint., $J = 5.7$, 4 H); 1.60 (br. s, exch. with D₂O, 3 H). ¹³C-NMR: 140.3 (C); 127.9 (CH); 126.8 (CH); 124.3 (CH); 52.7 (CH₂); 46.3 (CH₂); 43.9 (CH₂); 28.9 (CH₂). MS: 234 (MH⁺). Anal. calc. for C₁₄H₂₃N₃ (233.36): C 72.06, H 9.93, N 18.01; found: C 71.93, H 10.15, N 18.00.

3,6,9,12-Tetraazabicyclo[12.3.1]octadeca-1(18),14,16-triene (10a): Colorless foam. ¹H-NMR: 7.72 (s, 1 H); 7.40 – 7.06 $(m, 3 H)$; 3.82 $(s, 4 H)$; 2.72 $(m, 8 H)$; 2.68 $(s, 4 H)$; 1.99 (br. s, exch. with D₂O, 4 H). ¹³C-NMR: 141.4 (C); 127.8 (CH); 126.8 (CH); 126.6 (CH); 52.8 (CH₂); 49.1 (CH₂); 48.8 (CH₂); 48.2 (CH₂). MS: 249 (MH⁺). Anal. calc. for C₁₄H₂₄N₄ (248.37): C 67.70, H 9.74, N 22.56; found: C 67.57, H 9.93, N 22.50.

3,6,9,12-Tetraazabicyclo[12.2.2]octadeca-14,16,17-triene (11a): Colorless wax. ¹H-NMR: 7.29 (s, 4 H); 3.71 $(s, 4 H)$; 2.76 $(m, 4 H)$; 2.46 $(m, 4 H)$; 2.12 (br. s, exch. with D₂O, 3 H); 2.03 $(s, 4 H)$. ¹³C-NMR: 141.0 (C); 129.7 (CH); 53.6 (CH₂); 49.1 (CH₂); 48.9 (CH₂); 46.2 (CH₂). MS: 249 (MH⁺). Anal. calc. for C₁₄H₂₄N₄ (248.37): C 67.70, H 9.74, N 22.56; found: C 67.58, H 9.82, N 22.40.

 $3,7,11$ -Triazabicyclo[11.2.2]heptadeca-13,15,16-triene (12a): Colorless wax. ¹H-NMR: 7.27 (s, 4 H); 3.68 $(s, 4H)$; 2.45 $(m, 4H)$; 2.31 (br. s, exch. with D₂O, 3 H); 2.12 $(m, 4H)$; 1.33 ${quint. J = 7.1, 4H}.$ ¹³C-NMR: 140.2 (C); 129.1 (CH); 53.0 (CH₂); 43.3 (CH₂); 41.7 (CH₂); 29.7 (CH₂). MS: 234 (MH⁺). Anal. calc. for $C_{14}H_{23}N_3$ (233.36): C 72.06, H 9.93, N 18.01; found: C 71.95, H 10.05, N 17.89.

 $3,6,9,15$ -Tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene (13a): White solid. M.p. 75 - 78° (t-BuOMe). ¹H-NMR: 7.49 (*t*, *J* = 7.6, 1 H); 6.98 (*d*, *J* = 7.6, 2 H); 3.94 (*s*, 4 H); 2.69 (*m*, 4 H); 2.33 (br. *s*, exch. with D₂O, 3 H); 2.25 (m, 4 H). 13C-NMR: 159.5 (C); 136.2 (CH); 119.6 (CH); 53.7 (CH2); 49.1 (CH2); 48.9 (CH2). MS: 207 (MH^+). Anal. calc. for $C_{11}H_{18}N_4$ (206.29): C 64.05, H 8.79, N 27.16; found: C 63.93, H 8.91, N 26.98.

12-[(4-Bromobenzyl)oxy]-3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene (14a): Light yellow solid. M.p. 92–95° (i-Pr₂O-hexane). ¹H-NMR: 7.54 (d, J = 7.7, 2 H); 7.30 (d, J = 7.7, 2 H); 7.08 (d, J = 8.3, 1 H); 6.96 (d, $J = 8.3$, 1 H); 5.04 (s, 2 H); 4.06 (s, 2 H); 3.95 (s, 2 H); 2.75 (m, 4 H); 2.41 (m, 4 H); 2.29 (br. s, exch. with D2O, 3 H). 13C-NMR: 150.5 (C); 149.8 (C); 148.6 (C); 136.7 (C); 131.6 (CH); 128.8 (CH); 123.0 (CH); 121.9 (C); 120.0 (CH); 69.3 (CH₂); 52.1 (CH₂); 48.6 (CH₂); 47.8 (CH₂); 47.1 (CH₂); 47.0 (CH₂); 46.4 (CH₂). MS: 391, 393 (MH⁺). Anal. calc. for C₁₈H₂₃BrN₄O (391.31): C 55.25, H 5.92, N 14.32; found: C 55.02, H 6.02, N 14.21.

 $3,7,11,17$ -Tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (15a): White solid. M.p. 83-85° (t-BuOMe). $1H\text{-NMR}: 7.54 \ (t, J = 7.5, 1 \ H); 7.01 \ (d, J = 7.5, 2 \ H); 3.88 \ (s, 4 \ H); 2.76 \ (t, J = 6.0, 4 \ H); 2.63 \ (t, J = 6.0, 4 \ H); 2.36 \ (t, J = 6.0, 4 \ H); 2.36 \ (t, J = 6.0, 4 \ H).$ (br. s, exch. with D₂O, 3 H); 1.75 (quint., $J = 6.0$, 4 H). ¹³C-NMR: 159.0 (C); 136.6 (CH); 120.7 (CH); 54.1 $(CH₂)$; 47.6 (CH₂); 46.4 (CH₂); 28.8 (CH₂). MS: 235 (MH⁺). Anal. calc. for C₁₃H₂₂N₄ (234.24): C 66.63, H 9.46, N 23.91; found: C 66.43, H 9.63, N 23.79.

3,6,9,12,18-Pentaazabicyclo[12.3.1]octadeca-1(18),14,16-triene (**16a**): White wax. ¹H-NMR: 7.54 (t, J = 7.5, 1 H); 7.04 $(d, J = 7.5, 2$ H); 3.90 $(s, 4$ H); 2.84 $(m, 4$ H); 2.77 $(m, 4$ H); 2.75 $(s, 4$ H); 2.33 (br. s, exch. with D₂O, 4 H). ¹³C-NMR: 156.1 (C); 136.6 (CH); 121.3 (CH); 53.9 (CH₂); 48.6 (CH₂); 47.8 (CH₂); 47.1 (CH₂). MS: 250 (MH^+). Anal. calc. for $C_{13}H_{23}N_5$ (249.36): C 62.62, H 9.30, N 28.09; found: C 62.62, H 9.45, N 27.98.

We wish to thank the CNR, Rome, through the CNR Target Project on 'Biotechnology' for financial support. Prof. S. Aime is gratefully acknowledged for his interest and helpful discussions.

REFERENCES

- [1] a) F. Diederich, 'Cyclophanes', The Royal Society of Chemistry, London, 1991; b) A. Bencini, M. I. Burguete, E. Garcìa-España, S. V. Luis, J. F. Miravet, C. Soriano, J. Org. Chem. 1993, 58, 4749 and refs. cit. therein; c) 'The Chemistry of Heterocyclic Compounds', Eds. J. S. Bradshaw, K. E. Krakowiak, R. M. Izatt, Wiley-Interscience, New York, 1993.
- [2] M. Pietraszkiewicz, in Comprehensive Supramolecular Chemistry (Luminescent Probes), Pergamon, London, 1996, Vol. 10.
- [3] J. E. Richman, T. J. Atkins, *J. Am. Chem. Soc.* 1974, 96, 2268; T. J. Atkins, J. E. Richman, W. F. Oettle, in 'Organic Syntheses', Wiley, New York, Coll. Vol. VI, p. 652; B. K. Vriesema, J. Buter, R. M. Kellogg, J. Org. Chem. 1984, 49, 110; F. Chavez, A. D. Sherry, J. Org. Chem. 1989, 54, 2990.
- [4] R. J. Jones, H. Rapoport, *J. Org. Chem.* **1990**, 55, 1144; J. R. Henry, L. R. Marcin, M. C. McIntosh, P. M. Scola, G. D. Harris, S. M. Weinreb, Tetrahedron Lett. 1989, 30, 5709.
- [5] T. W. Green, P. G. M. Wuts, in Protective Groups in Organic Synthesis, Wiley, New York, 1991; P. J. Kocienski, in 'Protecting Groups', Thieme, Stuttgart, 1994.
- [6] H. Knowles, A. F. Parsons, R. M. Peltifer, Synth. Lett. 1997, 271.
- [7] B. Nyasse, L. Grehn, U. Ragnarsson, Chem. Commun. 1997, 1017.
- [8] A. Yasuhara, T. Sakanoto, Tetrahedron Lett. 1998, 39, 595.
- [9] G. Sabitha, B. V. S. Reddy, S. Abraham, J. S. Yadav, Tetrahedron Lett. 1999, 40, 1569.
- [10] S. Kobayashi, G. Peng, T. Fukuyama, Tetrahedron Lett. 1999, 40, 1519.
- [11] B. Nyasse, L. Grehn, H. L. S. Maia, L. S. Monteiro, U. Ragnarsson, J. Org. Chem. 1999, 64, 7135.
- [12] P. Sun, S. M. Weinreb, M. Shang, J. Org. Chem. 1997, 62, 8604.
- [13] J. A. E. Pratt, I. O. Sutherland, R. Newton, J. Chem. Soc., Perkin Trans. 1 1988, 13.
- [14] F. R. Atherton, H. T. Openshaw, A. R. Todd, J. Chem. Soc. 1945, 660.
- [15] A. Zwierzak, Synthesis 1984, 332; A. Zwierzak, K. Osowska-Pacewicka, Synthesis 1984, 223; A. Dumont, V. Jacques, P. Qixiu, J. F. Desreux, Tetrahedron Lett. 1994, 35, 3707; G. J. Bridger, R. T. Skerlj, S. Padmanabhan, S. A. Martellucci, G. W. Henson, S. Struyf, M. Witvrouw, D. Schols, E. DeClercq, J. Med. Chem. 1999, 42, 3971.
- [16] L. Qian, Z. Sun, M. P. Mertes, K. Bowman Mertes, J. Org. Chem. 1991, 56, 4904.
- [17] A. Zwierzak, J. Piotrowicz-Brylikowska, Angew. Chem., Int. Ed. 1977, 16, 107.
- [18] P. Patnaik, A Comprehensive Guide to the Hazardous Properties of Chemical Substances, Van Nostrand Reinhold, New York, 1992.
- [19] H. Stetter, W. Frank, R. Mertens, Tetrahedron 1981, 37, 767; S. Aime, M. Botta, S. Geninatti Crich, G. B. Giovenzana, G. Jommi, R. Pagliarin, M. Sisti, Inorg. Chem. 1997, 36, 2992.
- [20] S. Aime, M. Botta, L. Frullano, S. Geninatti Crich, G. B. Giovenzana, R. Pagliarin, G. Palmisano, M. Sisti, Chem.-Eur. J. 1999, 5, 1253.

Received December 29, 1999